Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
J Virol ; 97(4): e0026423, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36943051

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory disease in pigs of all ages and reproductive failure in sows, resulting in great economic losses to the swine industry. In this work, we identified the interaction between PSMB4 and PRRSV Nsp1α by yeast two-hybrid screening. The PSMB4-Nsp1α interaction was further confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and laser confocal experiments. The PCPα domain (amino acids 66 to 166) of Nsp1α and the C-terminal domain (amino acids 250 to 264) of PSMB4 were shown to be critical for the PSMB4-Nsp1α interaction. PSMB4 overexpression reduced PRRSV replication, whereas PSMB4 knockdown elicited opposing effects. Mechanistically, PSMB4 targeted K169 in Nsp1α for K63-linked ubiquitination and targeted Nsp1α for autolysosomal degradation by interacting with LC3 to enhance the activation of the lysosomal pathway. Meanwhile, we found that PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. In conclusion, our data revealed a new mechanism of PSMB4-mediated restriction of PRRSV replication, whereby PSMB4 was found to induce Nsp1α degradation and type I interferon expression, in order to impede the replication of PRRSV. IMPORTANCE In the swine industry, PRRSV is a continuous threat, and the current vaccines are not effective enough to block it. This study determined that PSMB4 plays an antiviral role against PRRSV. PSMB4 was found to interact with PRRSV Nsp1α, mediate K63-linked ubiquitination of Nsp1α at K169, and thus trigger its degradation via the lysosomal pathway. Additionally, PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. This study extends our understanding of the proteasome subunit PSMB4 against PRRSV replication and will contribute to the development of new antiviral strategies.


Assuntos
Interferon Tipo I , Vírus da Síndrome Respiratória e Reprodutiva Suína , Complexo de Endopeptidases do Proteassoma , Proteínas não Estruturais Virais , Expressão Gênica/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon beta/genética , Lisossomos/metabolismo , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Domínios Proteicos , Proteólise , Suínos , Ubiquitinação , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Animais
2.
Sci Transl Med ; 14(631): eabg8070, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138909

RESUMO

Designing effective antileukemic immunotherapy will require understanding mechanisms underlying tumor control or resistance. Here, we report a mechanism of escape from immunologic targeting in an acute myeloid leukemia (AML) patient, who relapsed 1 year after immunotherapy with engineered T cells expressing a human leukocyte antigen A*02 (HLA-A2)-restricted T cell receptor (TCR) specific for a Wilms' tumor antigen 1 epitope, WT1126-134 (TTCR-C4). Resistance occurred despite persistence of functional therapeutic T cells and continuous expression of WT1 and HLA-A2 by the patient's AML cells. Analysis of the recurrent AML revealed expression of the standard proteasome, but limited expression of the immunoproteasome, specifically the beta subunit 1i (ß1i), which is required for presentation of WT1126-134. An analysis of a second patient treated with TTCR-C4 demonstrated specific loss of AML cells coexpressing ß1i and WT1. To determine whether the WT1 protein continued to be processed and presented in the absence of immunoproteasome processing, we identified and tested a TCR targeting an alternative, HLA-A2-restricted WT137-45 epitope that was generated by immunoproteasome-deficient cells, including WT1-expressing solid tumor lines. T cells expressing this TCR (TTCR37-45) killed the first patients' relapsed AML resistant to WT1126-134 targeting, as well as other primary AML, in vitro. TTCR37-45 controlled solid tumor lines lacking immunoproteasome subunits both in vitro and in an NSG mouse model. As proteasome composition can vary in AML, defining and preferentially targeting these proteasome-independent epitopes may maximize therapeutic efficacy and potentially circumvent AML immune evasion by proteasome-related immunoediting.


Assuntos
Leucemia Mieloide Aguda , Complexo de Endopeptidases do Proteassoma , Proteínas WT1 , Animais , Antígenos de Neoplasias , Epitopos , Antígeno HLA-A2 , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Camundongos , Peptídeos , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/uso terapêutico , Receptores de Antígenos de Linfócitos T , Proteínas WT1/uso terapêutico
3.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051358

RESUMO

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


Assuntos
Proteína BRCA1/genética , Mutação em Linhagem Germinativa , Mutação com Perda de Função , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Adolescente , Proteína BRCA1/imunologia , Criança , Pré-Escolar , Cromatina/química , Cromatina/imunologia , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/imunologia , Família , Feminino , Regulação da Expressão Gênica , Heterozigoto , Histonas/genética , Histonas/imunologia , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/imunologia , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/imunologia , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação
4.
Eur J Immunol ; 52(2): 338-351, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34755333

RESUMO

PSMA3, a member of the proteasome subunit, has been shown to play a major player in protein degradation. Reportedly, PSMA3 functions as a negative regulator in various cancers including colon, pancreatic and gastric cancers. However, the contributions of PSMA3 to the progression of esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. Therefore, in this study, we investigated whether PSMA3 is involved in ESCC progression and the potential underlying mechanism. The results revealed that PSMA3 was highly expressed in the ESCC tumor tissues and functioned as a negative indicator according to the data from The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) datasets and clinical patients' samples. Pathway enrichment analysis showed that PSMA3 was closely correlated with ESCC cancer stemness and the inflammatory response; however, this correlation was absent after knockdown of PSMA3 in vitro. We further demonstrated that PSMA3 suppressed CD8+ T-cells infiltration depending on the C-C motif chemokine ligand 3 (CCL3)/C-C motif chemokine receptor 5 (CCR5) axis. Collectively, these results demonstrate the role of PSMA3 in ESCC cancer stemness and the negative regulation of CD8 T-cells infiltration mediated by PSMA3. The results of this study may provide a potential target for the immuno-oncology effect of PSMA3 in ESCC therapy.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Enzimológica da Expressão Gênica/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Proteínas de Neoplasias , Linhagem Celular Tumoral , Bases de Dados de Ácidos Nucleicos , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/imunologia , Carcinoma de Células Escamosas do Esôfago/enzimologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/imunologia , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Complexo de Endopeptidases do Proteassoma/biossíntese , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia
5.
Bioorg Med Chem Lett ; 55: 128478, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838650

RESUMO

The inhibition of immunoproteasome is considered nowadays a promising strategy for the treatment of hematologic malignancies. In this paper we report the design, synthesis, and biological evaluation as immunoproteasome inhibitors of a new series of isoquinolinone derivatives characterized by a (E)-prop-1-ene fragment that connects the heterocycle to a distal amide functionality. Among all the synthesized compounds, we identified an inhibitor with Ki values in the low micromolar or submicromolar range towards the chymotrypsin-like activities of both proteasome and immunoproteasome (ß5c, ß5i and ß1i subunits). Molecular modeling studies suggest that the most potent compound of the series may act a single-site binder. In particular, through its isopentyl group, it might dock into P1 site in the case of the ß1i catalytic subunit, while in the case of ß5c and ß5i subunits, the P3 site might be the preferred binding site.


Assuntos
Desenvolvimento de Medicamentos , Complexo de Endopeptidases do Proteassoma/imunologia , Inibidores de Proteassoma/farmacologia , Quinolonas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/química , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade
6.
Cells ; 10(12)2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34943847

RESUMO

Dysfunction of the immunoproteasome has been implicated in cardiovascular and pulmonary diseases. Its potential as a biomarker for predicting disease stages, however, has not been investigated so far and population-based analyses on the impact of sex and age are missing. We here analyzed the activity of all six catalytic sites of the proteasome in isolated peripheral blood mononuclear cells obtained from 873 study participants of the KORA FF4 study using activity-based probes. The activity of the immuno- and standard proteasome correlated clearly with elevated leukocyte counts of study participants. Unexpectedly, we observed a strong sex dimorphism for proteasome activity with significantly lower immunoproteasome activity in women. In aging, almost all catalytic activities of the proteasome were activated in aged women while maintained upon aging in men. We also noted distinct sex-related activation patterns of standard and immunoproteasome active sites in chronic inflammatory diseases such as diabetes, cardiovascular diseases, asthma, or chronic obstructive pulmonary disease as determined by multiple linear regression modeling. Our data thus provides a conceptual framework for future analysis of immunoproteasome function as a bio-marker for chronic inflammatory disease development and progression.


Assuntos
Inflamação/sangue , Inflamação/imunologia , Complexo de Endopeptidases do Proteassoma/sangue , Complexo de Endopeptidases do Proteassoma/imunologia , Fatores Etários , Células Sanguíneas/enzimologia , Doença Crônica , Feminino , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Sondas Moleculares/metabolismo , Fatores Sexuais
7.
Cells ; 10(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34943869

RESUMO

Proteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome' functions, they seem specially adapted for a role in MHC class I antigen processing and CD8+ T-cell activation. In this way, they may contribute to CD8+ T-cell-mediated control of intracellular infections, but also to the immunopathogenesis of autoimmune diseases. Starting at the discovery of its catalytic subunits in the genome, here, we review the observations shaping our current understanding of immunoproteasome function, and the consequential novel opportunities for immune intervention.


Assuntos
Alergia e Imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Apresentação de Antígeno/imunologia , Humanos , Imunidade , Inflamação/imunologia , Inflamação/patologia , Linfócitos T/imunologia
8.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943940

RESUMO

Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the ß5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and ß5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the ß5, ß5i, ß1, and ß1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either ß5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.


Assuntos
Cisteína/química , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Treonina/química , Ubiquitina/química , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Benzoxazóis/química , Benzoxazóis/farmacologia , Química Computacional , Cisteína/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/imunologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/imunologia , Relação Estrutura-Atividade , Treonina/imunologia , Ubiquitina/imunologia
9.
Cells ; 10(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34944095

RESUMO

Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.


Assuntos
Neoplasias/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Subunidades Proteicas/imunologia , Animais , Humanos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Subunidades Proteicas/química
10.
Cells ; 10(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34831075

RESUMO

Proteasome inhibitors (PIs) are approved backbone treatments in multiple myeloma. More recently, inhibition of proteasome activity with the PI bortezomib has been clinically evaluated as a novel treatment strategy in pediatric acute lymphoblastic leukemia (ALL). However, we lack a marker that could identify ALL patients responding to PI-based therapy. By using a set of activity-based proteasome probes in conjunction with cytotoxicity assays, we show that B-cell precursor ALL (BCP-ALL), in contrast to T-ALL, demonstrates an increased activity of immunoproteasome over constitutive proteasome, which correlates with high ex vivo sensitivity to the PIs bortezomib and ixazomib. The novel selective PI LU015i-targeting immunoproteasome ß5i induces cytotoxicity in BCP-ALL containing high ß5i activity, confirming immunoproteasome activity as a novel therapeutic target in BCP-ALL. At the same time, cotreatment with ß2-selective proteasome inhibitors can sensitize T-ALL to currently available PIs, as well as to ß5i selective PI. In addition, levels of total and spliced forms of XBP1 differ between BCP-ALL and T-ALL, and only in BCP-ALL does high-spliced XBP1 correlate with sensitivity to bortezomib. Thus, in BCP-ALL, high immunoproteasome activity may serve as a predictive marker for PI-based treatment options, potentially combined with XBP1 analyses.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Complexo de Endopeptidases do Proteassoma/imunologia , Inibidores de Proteassoma/farmacologia , Proteína 1 de Ligação a X-Box/metabolismo , Compostos de Boro/farmacologia , Bortezomib/farmacologia , Morte Celular/efeitos dos fármacos , Criança , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína 1 de Ligação a X-Box/genética
11.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831272

RESUMO

The degradation of most intracellular proteins is a dynamic and tightly regulated process performed by proteasomes. To date, different forms of proteasomes have been identified. Currently the role of non-constitutive proteasomes (immunoproteasomes (iPs) and intermediate proteasomes (intPs)) has attracted special attention. Here, using a CRISPR-Cas9 nickase technology, four cell lines: histiocytic lymphoma, colorectal adenocarcinoma, cervix adenocarcinoma, and hepatocarcinoma were modified to express proteasomes with mCherry-tagged ß5i subunit, which is a catalytic subunit of iPs and intPs. Importantly, the expression of the chimeric gene in modified cells is under the control of endogenous regulatory mechanisms and is increased following IFN-γ and/or TNF-α stimulation. Fluorescent proteasomes retain catalytic activity and are distributed within the nucleus and cytoplasm. RNAseq reveals marginal differences in gene expression profiles between the modified and wild-type cell lines. Predominant metabolic pathways and patterns of expressed receptors were identified for each cell line. Using established cell lines, we demonstrated that anti-cancer drugs Ruxolitinib, Vincristine and Gefitinib stimulated the expression of ß5i-containing proteasomes, which might affect disease prognosis. Taken together, obtained cell lines can be used as a platform for real-time studies of immunoproteasome gene expression, localization of iPs and intPs, interaction of non-constitutive proteasomes with other proteins, proteasome trafficking and many other aspects of proteasome biology in living cells. Moreover, the established platform might be especially useful for fast and large-scale experiments intended to evaluate the effects of different conditions including treatment with various drugs and compounds on the proteasome pool.


Assuntos
Complexo de Endopeptidases do Proteassoma/imunologia , Subunidades Proteicas/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Fluorescência , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano , Humanos , Interferon gama/farmacologia , Nitrilas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Vincristina/farmacologia
12.
Cells ; 10(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34831438

RESUMO

Numerous cellular processes are controlled by the proteasome, a multicatalytic protease in the cytosol and nucleus of all eukaryotic cells, through regulated protein degradation. The immunoproteasome is a special type of proteasome which is inducible under inflammatory conditions and constitutively expressed in hematopoietic cells. MECL-1 (ß2i), LMP2 (ß1i), and LMP7 (ß5i) are the proteolytically active subunits of the immunoproteasome (IP), which is known to shape the antigenic repertoire presented on major histocompatibility complex (MHC) class I molecules. Furthermore, the immunoproteasome is involved in T cell expansion and inflammatory diseases. In recent years, targeting the immunoproteasome in cancer, autoimmune diseases, and transplantation proved to be therapeutically effective in preclinical animal models. However, the prime function of standard proteasomes and immunoproteasomes is the control of protein homeostasis in cells. To maintain protein homeostasis in cells, proteasomes remove proteins which are not properly folded, which are damaged by stress conditions such as reactive oxygen species formation, or which have to be degraded on the basis of regular protein turnover. In this review we summarize the latest insights on how the immunoproteasome influences protein homeostasis.


Assuntos
Complexo de Endopeptidases do Proteassoma/imunologia , Proteostase , Animais , Humanos , Modelos Biológicos , Oxirredução , Proteólise , Ubiquitinação
13.
Biomolecules ; 11(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680146

RESUMO

Most recently, a technology termed TRIM-Away has allowed acute and rapid destruction of endogenous target proteins in cultured cells using specific antibodies and endogenous/exogenous tripartite motif 21 (TRIM21). However, the relatively large size of the full-size mAbs (150 kDa) results in correspondingly low tissue penetration and inaccessibility of some sterically hindered epitopes, which limits the target protein degradation. In addition, exogenous introduction of TRIM21 may cause side effects for treated cells. To tackle these limitations, we sought to replace full-size mAbs with the smaller format of antibodies, a nanobody (VHH, 15 kDa), and construct a new type of fusion protein named TRIMbody by fusing the nanobody and RBCC motif of TRIM21. Next, we introduced enhanced green fluorescent protein (EGFP) as a model substrate and generated αEGFP TRIMbody using a bispecific anti-EGFP (αEGFP) nanobody. Remarkably, inducible expression of αEGFP TRIMbody could specifically degrade intracellular EGFP in HEK293T cells in a time-dependent manner. By treating cells with inhibitors, we found that intracellular EGFP degradation by αEGFP TRIMbody relies on both ubiquitin-proteasome and autophagy-lysosome pathways. Taken together, these results suggested that TRIMbody-Away technology could be utilized to specifically degrade intracellular protein and could expand the potential applications of degrader technologies.


Assuntos
Epitopos/genética , Proteólise , Ribonucleoproteínas/genética , Anticorpos de Domínio Único/imunologia , Anticorpos/genética , Anticorpos/imunologia , Anticorpos/farmacologia , Epitopos/imunologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/farmacologia , Células HEK293 , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/imunologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/imunologia , Ribonucleoproteínas/imunologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/farmacologia , Ubiquitina/genética , Ubiquitina/imunologia
14.
Sci Rep ; 11(1): 20492, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650125

RESUMO

Recently some evidence has demonstrated the significance of PSMB8 in various malignancies. Nevertheless, PSMB8 (proteasome subunit beta 8), more familiar in the field of immunology contributing to the process of antigen presentation, is indeterminate in the role as a survival predictor of human pan-cancer. Besides, how PSMB8 interacts with immune cell infiltration in the tumor microenvironment requires further research. We then penetrated into the analysis of the PSMB8 expression profile among 33 types of cancer in the TCGA database. The results show that overexpression of PSMB8 was associated with poor clinical outcomes in overall survival (Sartorius et al. in Oncogene 35(22):2881-2892, 2016), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) in most cancer varieties. In addition, there existed distinctly positive correlations between PSMB8 and immunity, reflected straightforwardly in the form of immune scores, tumor-infiltrating immune cells (TIICs) abundance, microsatellite instability, tumor mutation burden, and neoantigen level. Notably, specific markers of dendrite cells exhibited the tightest association with PSMB8 expression in terms of tumor-related immune infiltration patterns. Moreover, gene enrichment analysis showed that elevated PSMB8 expression was related to multiple immune-related pathways. We finally validated the PSMB8 expression in our local breast samples via quantitative PCR assays and concluded that PSMB8 appeared to perform well in predicting the survival outcome of BRCA patients. These findings elucidate the pivotal role of the antigen presentation-related gene PSMB8, which could potentially serve as a robust biomarker for prognosis determination in multiple cancers.


Assuntos
Neoplasias/diagnóstico , Neoplasias/imunologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Instabilidade de Microssatélites , Oncogenes , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Análise de Sobrevida , Microambiente Tumoral
15.
Biochem Biophys Res Commun ; 578: 104-109, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560579

RESUMO

Nucleotide-binding site and leucine-rich repeat receptors (NLRs) play pivotal roles in plant immunity. The regulation of NLR stability is essential to ensure effective immunity, whereas the exact mechanism is largely unclear. The Arabidopsis CC-NBS-LRR protein L5 (At1g12290) can induce cell death in Nicotiana benthamiana, but not in Arabidopsis thaliana. We screened the interactors of L5 by yeast two-hybrid, and found that the BOI can interact with the CC domain of L5. Transiently expressed BOI reduced the protein level of L5, and suppressed the auoactivity of L5 in N. benthamiana. BOI can interact and ubiquitinate L5 in vitro, and mediate the proteasomal degradation of L5 in N. benthamiana and Arabidopsis. The Lys425 in the NBS domain of L5 is the critical unbiquitin site for the degradation. In conclusion, our results reveal a mechanism for the control of the stability of L5 protein and for the suppressed of L5-triggered cell death by a RING-type E3 ligase through the ubiquitin proteasome system.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas NLR/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas NLR/genética , Proteínas NLR/imunologia , Imunidade Vegetal , Complexo de Endopeptidases do Proteassoma/imunologia , Domínios Proteicos , Ubiquitina-Proteína Ligases/imunologia
16.
Biomolecules ; 11(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34356615

RESUMO

The gut epithelial barrier provides the first line of defense protecting the internal milieu from the environment. To circumvent the exposure to constant challenges such as pathogenic infections and commensal bacteria, epithelial and immune cells at the gut barrier require rapid and efficient means to dynamically sense and respond to stimuli. Numerous studies have highlighted the importance of proteolysis in maintaining homeostasis and adapting to the dynamic changes of the conditions in the gut environment. Primarily, proteolytic activities that are involved in immune regulation and inflammation have been examined in the context of the lysosome and inflammasome activation. Yet, the key to cellular and tissue proteostasis is the ubiquitin-proteasome system, which tightly regulates fundamental aspects of inflammatory signaling and protein quality control to provide rapid responses and protect from the accumulation of proteotoxic damage. In this review, we discuss proteasome-dependent regulation of the gut and highlight the pathophysiological consequences of the disarray of proteasomal control in the gut, in the context of aberrant inflammatory disorders and tumorigenesis.


Assuntos
Mucosa Intestinal , Complexo de Endopeptidases do Proteassoma , Proteólise , Transdução de Sinais/imunologia , Animais , Ativação Enzimática/imunologia , Humanos , Inflamação/enzimologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/imunologia , Lisossomos/enzimologia , Lisossomos/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo
17.
Cells ; 10(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206607

RESUMO

The ubiquitin-proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.


Assuntos
Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/imunologia , Hematopoese/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Neoplasias Hematológicas/tratamento farmacológico , Hematopoese/efeitos dos fármacos , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
18.
Drug Metab Dispos ; 49(9): 810-821, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34234005

RESUMO

KZR-616 is an irreversible tripeptide epoxyketone-based selective inhibitor of the human immunoproteasome. Inhibition of the immunoproteasome results in anti-inflammatory activity in vitro and based on promising therapeutic activity in animal models of rheumatoid arthritis and systemic lupus erythematosus KZR-616 is being developed for potential treatment of multiple autoimmune and inflammatory diseases. The presence of a ketoepoxide pharmacophore presents unique challenges in the study of drug metabolism during lead optimization and clinical candidate profiling. This study presents a thorough and systematic in vitro and cell-based enzymatic metabolism and kinetic investigation to identify the major enzymes involved in the metabolism and elimination of KZR-616. Upon exposure to liver microsomes in the absence of NADPH, KZR-616 and its analogs were converted to their inactive diol derivatives with varying degrees of stability. Diol formation was also shown to be the major metabolite in pharmacokinetic studies in monkeys and correlated with in vitro stability results for individual compounds. Further study in intact hepatocytes revealed that KZR-616 metabolism was sensitive to an inhibitor of microsomal epoxide hydrolase (mEH) but not inhibitors of cytochrome P450 (P450) or soluble epoxide hydrolase (sEH). Primary human hepatocytes were determined to be the most robust source of mEH activity for study in vitro. These findings also suggest that the exposure of KZR-616 in vivo is unlikely to be affected by coadministration of inhibitors or inducers of P450 and sEH. SIGNIFICANCE STATEMENT: This work presents a thorough and systematic investigation of metabolism and kinetics of KZR-616 and related analogs in in vitro and cell-based enzymatic systems. Information gained could be useful in assessing novel covalent proteasome inhibitors during lead compound optimization. These studies also demonstrate a robust source in vitro test system that correlated with in vivo pharmacokinetics for KZR-616 and two additional tripeptide epoxyketones.


Assuntos
Cisteína Endopeptidases/imunologia , Sistema Enzimático do Citocromo P-450/metabolismo , Epóxido Hidrolases/metabolismo , Morfolinas/farmacologia , Complexo de Endopeptidases do Proteassoma/imunologia , Proteínas/imunologia , Animais , Doenças Autoimunes/tratamento farmacológico , Células Cultivadas , Cisteína Endopeptidases/metabolismo , Epóxido Hidrolases/imunologia , Hepatócitos/metabolismo , Humanos , Inativação Metabólica , Inflamação/tratamento farmacológico , Macaca fascicularis , Inibidores de Proteassoma/farmacologia
19.
Microbiol Res ; 250: 126810, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34246833

RESUMO

Plant pathogenic Gram-negative bacteria evade the host plant immune system by secreting Type III (T3E) and Type IV effector (T4E) proteins into the plant cytoplasm. Mostly T3Es are secreted into the plant cells to establish pathogenicity by affecting the vital plant process viz. metabolic pathways, signal transduction and hormonal regulation. Ubiquitin-26S proteasome system (UPS) exists as one of the important pathways in plants to control plant immunity and various cellular processes by employing several enzymes and enzyme components. Pathogenic and non-pathogenic bacteria are found to secrete effectors into plants with structural and/or functional similarity to UPS pathway components like ubiquitin E3 ligases, F-box domains, cysteine proteases, inhibitor of host UPS or its components, etc. The bacterial effectors mimic UPS components and target plant resistance proteins for degradation by proteasomes, thereby taking control over the host cellular activities as a strategy to exert virulence. Thus, the bacterial effectors circumvent plant cellular pathways leading to infection and disease development. This review highlights known bacterial T3E and T4E proteins that function and interfere with the ubiquitination pathway to regulate the immune system of plants.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Imunidade Vegetal , Plantas/microbiologia , Complexo de Endopeptidases do Proteassoma/imunologia , Ubiquitinação/imunologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitinação/genética
20.
Blood ; 138(25): 2607-2620, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34293122

RESUMO

In addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by the budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions. It is unknown, however, whether the proteasome is transferred from platelets to PEVs or whether its function is retained. We hypothesized that functional protein processing and antigen presentation machinery are transferred to PEVs by activated platelets. Using molecular and functional assays, we found that the active 20S proteasome was enriched in PEVs, along with major histocompatibility complex class I (MHC-I) and lymphocyte costimulatory molecules (CD40L and OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not increase in platelet concentrates that caused adverse transfusion reactions. They were augmented, however, after immune complex injections in mice. The complete biodistribution of murine PEVs after injection into mice revealed that they principally reached lymphoid organs, such as spleen and lymph nodes, in addition to the bone marrow, and to a lesser extent, liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA) and loaded its antigenic peptide onto MHC-I molecules, which promoted OVA-specific CD8+ T-lymphocyte proliferation. These results suggest that PEVs contribute to adaptive immunity through cross-presentation of antigens and have privileged access to immune cells through the lymphatic system, a tissue location that is inaccessible to platelets.


Assuntos
Plaquetas/imunologia , Vesículas Extracelulares/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Apresentação de Antígeno , Plaquetas/química , Vesículas Extracelulares/química , Antígenos de Histocompatibilidade Classe I/análise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...